
625 

The boundary layer on a magnetized plate 

By M. B. GLAUERT 
Department of Mathematics, University of Manchester 

(Received 24 October 1961) 

This paper is concerned with the magnetohydrodynamic boundary layer in 
uniform flow past a flat plate, when a uniform magnetic field in the stream direc- 
tion is applied at the plate. For both large and small values of the electrical con- 
ductivity parameter, solutions in series are derived for the velocity and magnetic 
fields. In  each of the cases it is shown that if the strength of the applied 'field 
exceeds a certain critical value, boundary-layer separation occurs. 

1. Introduction 
The aim of the present investigation is to gain further insight into the funda- 

mentals of the flow of a conducting fluid of small viscosity past a solid body. 
Solutions for the motion of a perfectly conducting inviscid fluid are obtainable, 
but it is difficult to know how much trust to put in these in view of the frequently 
disastrous consequences of omitting viscosity in the analysis of a non-conducting 
fluid. For the latter, experimental observation and boundary-layer theory have 
over the years built up a very satisfactory background by which to judge whether 
a particular inviscid solution can be relied upon, or whether separation will cause 
a gross change in the flow. For conducting fluids observation has as yet virtually 
nothing to offer. The remaining hope seems to be to build up understanding 
through studying magnetohydrodynamic boundary layers, starting with the 
flows which are most tractable mathematically. 

The problem discussed in this paper is the steady two-dimensional flow of 
an incompressible viscous electrically conducting fluid past a semi-infinite flat 
plate, when both the Reynolds number and the magnetic Reynolds number are 
large. There is no magnetic field in the distant fluid, but in the boundary layer 
there is a field in the stream direction, generated by external means within the 
plate itself. The streamwise component of the field at  the plate surface is constant. 
The electric field is zero everywhere. One physical interest in this flow lies in the 
possibility of using such a field to shield a body from excessive heating. Across 
a magnetohydrodynamic boundary layer the sum of the static and magnetic 
pressures is constant, and this means that the pressure a t  the surface is reduced 
by the amount of the magnetic pressure of the applied field. For a compressible 
fluid this would imply an equivalent change in density, and hence in heat transfer. 

The mathematical technique used is a development of that given in a previous 
paper by the author (Glauert 1961, hereafter referred to as G), which treated 
a similar flow but with the basic magnetic field in the fluid instead of in the 
plate. The essential idea is that when the conductivity parameter E, the ratio of 
the viscous and magnetic diffusivities, is either large or small, the boundary layer 
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may be treated as two largely separate layers, and the required solution may 
be built up in series by suitably matching conditions far out in the inner layer 
with those close in in the outer layer. The method requires care in its application, 
as will become apparent, since more than one form of transformation of variables 
may at first sight appear feasible. The justification of a successful application 
of the method is that it can be seen how the next terms in the series expansions 
may be determined, and determined uniquely. It is not easy to show that the 
series can be continued indefinitely in any specific manner. Thus logarithmic 
terms are frequently required at  certain stages, and later on perhaps ‘log log ’ 
terms would be also needed. 

The two cases of e large and small compared with unity are referred to as those 
of large and small conductivity respectively. As in G, the requirement that the 
magnetic Reynolds number be large limits the applicability of the results for 
small conductivity. In  this paper a further subdivision is necessary. When the 
field strength parameter p, to be defined in equation (2.7), is sufficiently small 
the leading terms of the series solutions are independent of p, but when p is 
larger even the leading terms depend intimately on p, and the forms of the 
expansions are modified. We describe the fields in these two cases as being weak 
and strong respectively. 

The most striking result of the analysis is that for both large and small con- 
ductivity the boundary layer separates from the surface for sufficiently large 
values of the applied field strength. This confirms the importance of magnetically 
induced separation as an effect to be reckoned with in magnetohydrodynamics. 

The possibility of setting up physically the assumed field requires examination. 
Consider the flow past a non-magnetic body of revolution in which, after a short 
rounded or conical nose, there is a substantial length of uniform cfiRAzlar section. 
Over this length the stream velocity is uniform, and as far as the boundary layer 
is concerned it may justifiably be treated as a flat-plate flow. Suppose now that 
there is a closely wound solenoid round this cylindrical section, embedded so 
as to leave the surface smooth. In  magnetostatics a current passing through this 
solenoid produces a strong magnetic field inside the cylinder but only a weak 
one outside, since field lines emerging from the two ends of the coil join up by 
circuits extending to large distances. In  magnetohydrodynamics the situation 
is fundamentally different. The field lines which emerge at the upstream end 
cannot escape, but are swept back by the stream and concentrated into a boun- 
dary layer outside the cylinder, producing a correspondingly strong field there. 

Suppose that the field strengths just outside and inside the coil are Hoi and 
H,i respectively, where i is a unit vector parallel to the axis of the body. If the 
boundary layer is thin there can be no comparable field in the radial direction. 
The equation j = curlH (in MKS units) shows that 

Ho- HI = J ,  (1.1) 

where J is the total current in the solenoid per unit distance in the axial direction. 
If the cylinder is long, the axial field inside is effectively constant across the 
section. In  the boundary layer the flux of H, per unit distance in the circum- 
ferential direction, is Ho 8, where 6 is a measure of the magnetic-boundary-layer 
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thickness. Since divH = 0, the total flux across the section must be zero, and 
hence, if d is the cylinder diameter, 

d S H o  + &d2Hl = 0, 

or fll = - 4(6/&) H,. (1.2) 

H, e J .  (1 .3 )  

This shows that when 6/d is small, H, is small compared with H,. In this case, 
from ( l . l ) ,  

This calculation proves that a uniformly wound solenoid would give the 
necessary magnetic field. There is also a small component of field across the 
solenoid. This is needed to provide the additional flux in the boundary layer as 
6 increases, and causes a corresponding change in H,, as given by (1 .2) .  

The basic equations for the problem of this paper were written down by 
Zhigulev (1959a) ,  but he obtained no solutions. Zhigulev also considered the 
effects of a magnetic field in the circumferential direction, as would be produced 
by electric current flowing back in the boundary layer from an electrode at the 
nose of the body. This has no effect at  all on the velocity distribution; it produces 
only a pressure gradient normal to the surface, and the distribution of magnetic 
intensity within the boundary layer is given by simple integration. Rossow 
(1957) considered the flow past a flat plate in a transverse magnetic field. He 
distinguished two cases, the field fixed in the fluid and the field fixed in the 
plate. This latter case might by thought to be related to our problem, but in 
fact the analysis is in error since the electric field is ignored. ROSSOW'S field 
extends indefinitely, instead of being confined to a boundary layer, and this 
cannot be correct for a field generated within the plate. 

Meyer ( 1  960) has studied the problem analogous to that treated here for the 
axi-symmetric flow near a stagnation point. He concentrates on the case of 
small E, as being the one of chief physical interest, and proceeds to  set up inner 
and outer solutions, and to match them as in the present paper in the limiting 
case E -+ 0. He evaluates the solutions numerically for a variety of values of the 
applied field strength, but does not detect any tendency to separation. 

Since a negative pressure at the plate is inadmissible physically, the change in 
magnetic pressure 4p.H; across the boundary layer cannot exceed the stream 
pressure po. Any stronger field must cause the whole flow to leave the surface. 
This phenomenon, a form of cavitation, has been discussed by Zhigulev (1959 b)  
and is quite distinct from the separation encountered in this paper. Here, as in 
ordinary incompressible hydrodynamics, p o  does not enter into the equations. 
For an actual fluid, the question of whether one would expect cavitation or 
separation to occur first as the field strength is increased depends on the par- 
ticular values of p ,  and e. Plausible physical situations can be envisaged for each 
possibility . 

2. Large conductivity, weak field 

as in G) are 
The equations which govern the flow in the boundary layer (derived precisely 

f" + f f  If - pgg" = 0, 
g" + E( fg' - f ' g )  = 0, 

(2 .1 )  

(2 .2)  
40-2 
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with boundary conditions 

f(0) = f ’ ( O )  = 0, f’(03) = 2, g’(0) = 2, g(o0) = 0. (2.3) 

The only change from the problem treated in G, with the basic field in the fluid 
rather than in the plate, lies in the boundary conditions on g. The independent 
variable ‘I is given by 

‘I = a(Uolvx)tY, (2.4) 

x and y being distances along and perpendicular to the plate, measured from the 
leading edge. The velocity and magnetic field components are 

26 = Waf', 2, = HU,V/X)i (‘If’ -f), (2.5) 

H, = $Hog’, Hu = +Ho(v/Uox)*(~y’-g). (2.6) 

The fluid has density p, kinematic viscosity v, electrical conductivity IJ and 
magnetic permeability p. The speed of the undisturbed stream is Uo and the 
magnetic field intensity at the plate has x-component H,. Also 

E = I J ~ V ,  p = pH$/pU$. (2.7) 

It is no longer possible, as in G, to interpret /3 as the square of the AlfvAn 
speed, since outside the boundary layer there is no field. Nevertheless, it  is 
convenient to retain the parameter ,8 in its previous form, as a suitable non- 
dimensional measure of the strength of the applied field. The conductivity 
parameter E is equal to the ratio of the viscous and magnetic diffusivities. 

When E is large we expect the boundary layer to consist of two parts, an outer 
one where viscous forces are important but magnetic diffusion is negligible, 
and an inner one governed largely by magnetic forces. 

We may hope to obtain the first approximations !,(‘I), g, (q)  applicable in the 
outer layer by ignoring the first term in (2.2) and discarding the boundary 
condition on g’(0). The required solutions are 

f o  = B(’I17 90 = 0, (2.8) 

where B(7) is the Blasius function governing the boundary layer on a flat plate 
in a non-conducting fluid. Final approval of these solutions must await success- 
ful matching with the inner solutions. 

In  the inner layer it is necessary to employ modified equations. The terms of 
(2.2) must be comparable, g’ must be O(l) ,  and since B”(0) = A = 1.3282, 
f ”  must be O( 1). Accordingly we write 

‘I = e-*S, f(7) = E-*F(S), g ( 7 )  = c-*G(S). (2.9) 

(2.10) 

(2.11) 

F ( 0 )  = F’(0) = 0, G‘(0) = 2. (2.12) 

Thusf”(7) = F”(S), g’(7) = G’(& etc., and (2.1) and (2.2) become 

F‘“ +E-~FF” - pe-bGG” = 0, 

G“ + FG’ - F’G = 0, 
with boundary conditions 

When S is large there must be suitable agreement with the outer solutions with 
‘7 small. These regions correspond since e is large. We may note that the relation 
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between g and G differs from that required at  the corresponding stage of the 
analysis in G. 

We have already assumed that e-1 is small, but to proceed with the solution of 
(2.10) a further assumption is necessary. Suppose first that the field is sufficiently 
weak for /3e-* to be small compared with unity. What happens when the field is 
stronger will be considered in $3. 

For the first approximations, we see from (2.10), (2.12) and the matching 
requirement withf”(0) that 

and hence (2.11) becomes 

The required solution is 

Fo = &tp, 

G,“ + +AC2Gh - A(Go = 0. 

(2.13) 

(2.14) 

Go = 2[1&(-i,$, -&453)+K1F1(-$,$, -$.4g3), 
is the confluent hypergeometric function and the constant 

K = -9(6/A)* [(+)!/(+)!I2 = - 2.156. (2.16) 

This is chosen so that Go is exponentially small for large c, giving the necessary 
matching with go. We see that Go(0) = K.  

These solutions may now be improved by including the effects of small but 
non-zero values of pe-4 and e-l. As in G, the extra contributions are found by 
examining the unsatisfied terms in the equations and the imperfections in 
matching between the inner and outer layers. In  the outer layer fo, go are exact 
solutions of equations (2.1) and (2.2). For 9 small, 

(2.15) 

where 

fo = $A92 120 + . . . , 
which implies that, for 5 large, 

P c f o d  N 4A<2-&p42~-155+  ..., (2.17) 

and so a term proportional to B-1 must be added to the inner solution to  improve 
the matching. Since Go tends to zero exponentially, neither Po nor Go calls for 
any modification in the outer layer. However, the form of equation (2.10) 
shows that perturbations proportional to both /3e-* and e-l are needed. 

Suppose that we first write 
F = Fo + P d F ,  (2.18) 

and similarly for G ,  f and g .  The equations and boundary conditions for the outer 
layer show that f, = g ,  = 0. For the inner layer, from (2.10) and (2.11), 

3” 1 -  - G 0 0 7  GI” (2.19) 

@; + *AC’G; - ACG, = F;  Go - F1 G;. (2.20) 

We require Fl(0) = F;(O) = 0, and F’;(co) = 0 to match withf,. This determines 
Fl. In  particular 

q ( o )  = - J’r ~ ~ ~ ; d g  (2.21) 

With PI known, we can proceed to solve (2.20) with its appropriate boundary 
conditions G;(O) = 0, G,(co) = 0. Numerical integration gave the values 

F ; ( O )  = - 1.220, G,(O) = -0.657. (2.22) 
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If p is very small, the chief perturbation is that in e-l. Let 

F = Fo + ~-1F2, (2.23) 

and similarly for G, f and g. As before, we see that f 2  = g, = 0. The equations 

FZ = -FOP,“ = - @ 2 E Z ,  (2.24) for F2 and G, are 

Gi + +A[2GL - A(G2 = F; Go - F2G;. (2.25) 

The boundary conditions F2(0) = Fh(0) = 0 and the requirements that for 5 
large, F2 has a term - &A256 (as given by (2.17)) but no term in 6, (for matching 

F -_-- (2.26) withf,) show that 

Equation (2.25) can now be integrated numerically with boundary conditions 
GL.0) = 0, G2(co) = 0, giving 

Fi(0) = 0, G,(O) = -0.024. (2.27) 

It seems clear that, if required, further terms may be calculated in the expan- 
sions for f, g, F and G without any fundamental difficulty in matching the 
solutions at each stage. The results established here give for the skin friction 
at the plate 

2 - l;oA2E6. 

7211 = / l ( W Y ) , = O  = t P (  GI 4 4 8  F”(0) 
= 0 ~ 3 3 2 0 6 p ( U ~ ~ / ~ ) ~ { 1 - 0 * 9 l S ~ d +  ...}, (2.28) 

and for the normal component of magnetic intensity at the plate 

Hn =z - v/Uoz)t d G ( 0 )  
= 1 ~ 0 7 8 H o ( ~ / U o ~ ) ~ ~ ~ { l  +0-305/%-3+ O . O l l ~ - l +  ...}. (2.29) 

The quantity H, is of interest since it determines the magnetic drag. By 
AmpAre’s law and (1.3), the drag force on the solenoid in the plate is ,uHoHn 
per unit area (ignoring the inaccuracy in (1.3)), and the total drag per unit 
area is therefore 

T = rW+/lHgHn 
= 0*33206p( U;V/Z)* (1 + 2.329ptd + .. .>. (2.30) 

The skin friction decreases as ,8 increases, and HJH, increases. If e is large, 
the results are still applicable when /3 is of the order of unity, but it remains 
to be discussed what happens when PE-* ceases to be small. 

3. Large conductivity, strong field 
When pea is not small no change is needed in the outer layer, but in the inner 

layer the last term of (2.10) can no longer be ignored in the fist approximation. 
We are compelled to revise the transformation (2.9) so that this last term is on 
a par with the first term. To achieve this one of our three previous requirements 
on the form of the transformation must be relaxed. The terms of (2.11) must 
continue to balance or unacceptably trivial equations will result, and the 
boundary condition on g’(0) cannot be abandoned. Accordingly we must drop 
the requirement that f ’’ is O( 1) and write 

7 = p-k-ie, f(7) = pe-Q$(e), g(7) = p-k-+(s). (3.1) 
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The equations for the inner layer become 

qy + €-I$$" - $$-" == 0, 

$" + rj51c.' - rj5'@ = 0, 
with boundary conditions 

$ ( O )  = $' (O)  = 0, $'(O) = 2, $"(oo) = A,&@, +(a) = 0. (3.4) 

The value of $"(co) is as required to match the unchanged value of f"(0) from 
the outer layer. 

For p very large, we might hope to obtain the fundamental form of solution 
for the inner layer by taking $"(a) to be zero. Analysis shows that this is not a 
tenable hypothesis. We require $ and r j5r  to be always positive, otherwise reversed 
flow occurs. Likewise we expect f to be positive everywhere, and so $ must be 
negative since it is zero at infinity. Equation (3.3) now shows that $" is negative, 
and hence from (3.2), is positive. Consequently qYr increases steadily, and 
cannot be zero at  infinity. Indeed this argument suggests that solutions satis- 
fying (3.4) are possible only for sufficiently small values of ps". 

rises to its limiting value (assuming that this exists), it is clear that 
$"(O)  -+ 0. We cannot take $"(O)  = 0, as may be seen from the equation 

As 

9" + €-I$#" - $2$' + $p$ = 0, (3.5) 

obtained from (3.2) and (3.3). This equation and its derivatives show that if 
$ ( O )  = $' (O)  = $"(O)  = 0, then $ = 0. 

Suppose instead that #"(O) = D, a small constant, and that $(O) = -C. In  
a substantial region near the wall $ and 4' are then small, and from (3.3) so also 
is $". Hence, approximately, 

in this region and, with the term in c-1 omitted, (3.5) becomes 

@ =  2 8 4 ,  $ r  = 2  (3.6) 

(3.7) 

(3.8) 

y/ - (2e - c)2 9' + z p e  - c) 4 = 0. 

$(' = D cash (ce - 821,  

The required solution of (3.7) is found as 

using the fact that q5 = 28 - C is one solution of the equation, and hence, from 
(3.2), @'r = - D sinh ((78 - 8 2 ) .  Now $" must be appreciable by the time $ becomes 
small, near 8 = *C, or the boundary conditions $'(a) = 0 cannot possibly be 
satisfied. Consequently if D is small, C must be large. 

If we assume CB - O2 to be large, (3.8) is approximately 

$"= iDexp(C8-82) =Eexp(-t2),  (3.9) 

where E = $D exp ( tC2) ,  t = 8 - 4C. (3.10) 

We take t as independent variable in place of 8. From (3.9) we then have 

$' = Eerfc(-t), $ = E{terfc(-t)+$exp(-t2)), (3.11) 

where erfc x = exp ( - u2) du, J: 
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since the wall may be considered to be at t = - co. In  terms oft, the expressions 
(3.6) are $ = 2t, 9' = 2. (3.12) 

The limiting form of our equations can now be seen. We have to integrate 
(3.2) (with the e-l term omitted) and (3.3), starting at large negative t with the 
values given by (3.9), (3.11) and (3.12). There is one disposable constant E ,  and 
this must be chosen to make $(co) = 0. The value of $"(a) now determines the 
critical values of BE-*. 

Numerical integration showed clearly that only one value of E is acceptable. 
With E too small, $ became positive, and with E too large, $' became negative 
while $ was still negative. The values finally obtained were 

E = 1.091, $"(a) = 1.553, 

which corresponds to p = 0.812.d. 

(3.13) 

(3.14) 

As p approaches this value there is an increasingly large region at the wall 
where there is effectively no flow and a constant magnetic field. For still larger 
/3 we may expect this to persist-a stagnant region of uniform field strength, 
separated from the main flow by a mixing region where the field falls to zero and 
the velocity rises to its free-stream value. In  fact separation of the boundary 
layer has occurred. 

For values of Pe-Q smaller than the separation value, but too great for the 
analysis of $ 2  to be applicable, it would be necessary to solve (3.2) and (3.3) 
numerically, with the appropriate boundary conditions (3.4). There seems no 
reason to suppose that this family of solutions can be expressed in any simple 
manner. 

4. Small conductivity, weak field 
When 8 is small, the viscous boundary layer is expected to be much thinner 

than the magnetic layer. In  the viscous layer the appropriate equations are 
(2.1) and (2.2), the boundary condjtions (2.3) having such modifications as 
prove to be necessary at  7 = 00. In  the magnetic layer the terms of (2.2) are 
comparable, and f = O( 1) from the condition at 7 = co. For sufficiently weak 
fields the change in g' across the inner layer is small (as will be verified by the 
detailed solutions), and consequently we require g' = O(1) in the outer layer. 
We therefore write, exactly as for the corresponding case in G, 

7 = e-%-, f ( 7 )  = e-3F(5), 9(7)  = e - W C ) ,  (4.1) 

and (2.1) and (2.2) become 
eF" + FF" - pGG" = 0, 

G" + FG' - F'G = 0. 

Necessary boundary conditions are 

F(0)  = 0, F'(cD) = 2, G(m) = 0. (4.4) 

(Without the first of these, the matching of the inner and outer solutions would 
demand an unacceptable value off(co).) 
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When the field is weak the first approximations F = Fo, etc., are found by 
putting E = /3 = 0. Equation (4.2) gives Fo = 25, and (4.3) becomes 

G: + 25G; - 2G0 = 0. (4.5) 

Equation (2.2) suggests that the change in g; across the inner layer is negligible; 
consequently Gi(0) = 2 and the required solution of (4.5) is 

Go = 2n-*{2<erfc 5 - exp ( - 5')). 
Thus, for 6 small, - - 2n-t + 25- 2n-352+ . .., Go - 

which implies that, for 7 large, 

g N - 2n-ge-4 + 27 - 2n-+e*72 + . . . , (4.8) 

and so g must be O ( d )  rather than O(1) in the inner layer. The basic solution 
of (2.1) is f o  = B(q), the Blasius function as before. Equation (2.2) shows that 
g" = O(e)g, and using (4.8) and the boundary condition (2.3) at 7 = 0 we obtain 
as our first approximation 

go = - 2n-+s-* + (27 - co), (4.9) 

where co is a constant to be determined later. 
It might be thought more logical to replace g(7) by a new function e-$h(~) ,  

say, so that h would be O(1) in E .  Unfortunately this would create as many 
irregularities as it eliminated. The last term of (4.9) would then be relegated to 
the next approximation, yet it is needed to satisfy the boundary condition 
g'(0) = 2, and to fix Go(<). In  practice there is no special difficulty; there are as 
before just sufficient equations and boundary conditions to determine the next 
terms in the expansions at each stage. 

We now consider improvements to these solutions. Contributions proportional 
to /3 are needed to satisfy terms in (2.1) and (4.2). If we write F = Fo++F1, etc., 
we obtain from (4.2) 

P'; = (4/n5) {exp ( - 25') - 25 exp ( - C2) erfc C}, (4.10) 

and hence for 5 small 
F; N 4/T<, F i  N (4/77) log 5. 

From equations (2.1) and (2.2), 

and hence for 7 large 

since B N 27 - c,  where c = 1.7208, and so 

f:" + Bf; + B"f, = (4/n) B', 

f:" + (27 - c)f; N 8/n, 

(4.11) 

(4.12) 

f; (4/7J) 1% 7- (4.13) 

Now log q = log 6 + 8 log (l /e),  and we see (as in G )  that the necessary matching 
of the inner and outer solutions can be achieved only if the expansions also 
contain terms in +log (l/e). 
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Let P = Po +/IF, + plog (I/€) F,, etc. Then the matching requirement is that 

F@) = fL(C0) + z/n. 
The governing equations are 

Fi = 0, f[ +By'. + B'y2 = 0, 

(4.14) 

with boundary conditions 

F2(0) = 0, F;(W) = 0, f2(0) = 0, fL(0) = 0, 

and the required solutions are 

P2 = 0, fi = - (1/2n) (B + 7B'). (4.15) 

No comparable logarithmic terms occur in g, or G,, so g, = G, = 0. 

condition F;(co) = 0 gives 

where eix = z d u .  

For x small, ei x -h -log x - y, where y = 0.5772 is Euler's constant, and hence 
for 6 small, 

P; -rr (4/7~) log {+ (2/7~) log 2 + (2y/n) + 1 = (4/7~) log c+ 1.809. (4.17) 

For matching we therefore require that 

We can now return to the equations for P,, etc. Integration of (4.10) with the 

(4.16) F; = - (2/n) ei ( 2c2) + (4/n) erfc2 5: 

f; N (4/n) log 7 + 1.809 (4.18) 

for 7 large. Numerical integration of (4.12), satisfying (4.18) and the conditions 
fi(0) = f;(O) = 0, gave the value 

f;(O) = 0.506. (4.19) 

Equation (2.2) and the boundary conditions show that g, = constant, and so 
G;(O) = 0. The equation for G, is 

G; + 2CG; - 2G1 = F; Go - F1 GA, (4.20) 

and this may now be solved analytically, using previous results. It was found 
that G,(O) = - 2.209 and hence 

g, = - 2 . 2 0 9 ~ 6  + c,, (4.21) 

where c, is a constant of order unity. 
The perturbations to the basic solution of order €4, for which we write 

F = FO+dF3, etc., 

are found by a routine application of the methods described above and in G. 
The results obtained are 

1 F, = -c, G, = -2n-*cerfcc, 

f, = 0, g, = - 2n-472 + z;rr-+cy + c3, 
(4.22) 

where c3 is a constant which cannot be determined at  this stage and (as before) 
c = 1.7208. During the calculation it is proved that, in equation (4.9), co = c. 
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As in $2, there is no sign of any bar to continuing with the calculation of 

To summarize, the chief results obtained in this section, corresponding to 
further terms in the expansions, if desired. 

(2.28), (2.29) and (2.30) are 

720 = ;IP(Ui v/x))f”(O) 

H?l = - 3Ho(Jml4* d o )  
= 0*33206p( Ui V / Z ) *  (1 - 0-477810g (I/€) + 0*381p + . . .}, 

= 0*5642H0(~pU0~)~ (1 + 1-958p + 1.525~3 + ...}, 

(4.23) 

(4.24) 
T = 0~33206p(U~~/~)*{l-0*477~10g(l/~)+2~080~+ ...}. (4.25) 

For these results to be of value it is necessary that p shall be small compared 
with {log (l/c)}-l, which is itself small. In  most physical situations so far examined 
E is in fact very small, peraphs roughly of the order of In  this case /3 would 
have to be less than 0.2, if the second term in the braces in (4.23) is not to exceed 
the first. As was the case for large E, a separate investigation is needed to deter- 
mine what happens if Flog (l/s) is not small. 

5. Small conductivity, strong field 
In  this section we shall show that when E is small, separation occurs when p 

reaches a certain multiple of {log (l/e))-l. This is as might have been forecast 
from (4.23). The analysis is more complicated than that in $3 for the case of 
E large, due chiefly to the presence of the logarithmic terms. In  presenting the 
results we shall set out the forms of transformation required in the inner and outer 
layers, and proceed to derive the relevant solutions. We shall then look back 
and, in the light of the results obtained, shall be able to perceive the necessity 
for the assumptions made previously. 

I n  the inner layer we write 

‘I = PIT% f(r) = Pt$4(@, g(’I) = € - ~ { l o g ( l / € ) } - ~ F - * p ~ $ ( ~ ) ,  (5.1) 

and obtain from (2.1) and (2.2) 

$4”’ + $4qY -{log (1/€)}-1($4’$2- $4&v) = 0, 

$I1 + €($4$‘ - $’@) = 0, 

(5.2) 
(5.3) 

d(0) = f(0) = 0, @ ( O )  = - 1. (5.4) 

with boundary conditions 

The boundary condition on g(m) from (2.3) is ignored as before, and the inner 
boundary condition is applied to @ rather than $’. The new constant Po (assumed 
to be O( l),  as will be justified aposteriori) is chosen so that $ ( O )  = - 1. The choice 
of symbol is influenced by the fact that Po is of the same general order of magni- 
tude as /3, as will appear below. In  the outer layer we write 

‘I = s-% f ( r )  = E - w c ) ,  g(7) = €-+g (1/4]-V-*G(c), (5 .5 )  

(5.6) 

(5.7) 

and obtain EF”’ + FF” - {log (I/E)}-’ GG” = 0, 

G“ +PO’ - F’G = 0, 
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with boundary conditions 

P(0) = 0, P’(w) = 2,  G(w) = 0. (5.5) 

We note, for purposes of matching, that 

P’ = Po$ ’ ,  = Pi$, (5.9) 

in their common region of validity. 
We now look for solutions of (5.2), (5.3),  (5.6) and (5.7) in the form 

$ = $o+(log(1/E))-1$,+..., (5.10) 

etc., where the functions $o, etc., may depend upon Po, but not on P or e explicitly. 
From (5.3) and the boundary conditions, 

?f+o=-l, = 0. (5.11) 

Terms linear in 0 are forbidden by the matching requirement. Equation (5.2) 
gives $: + $o$i = 0, and hence 

$o = a ~ ( a e ) ,  (5.12) 

where a is some constant, and so 
$A(Co) = 2a2. (5.13) 

The next most important terms in (5 .2)  require 

4Y+$OK+$iA = $& (5.14) 

which implies (as in equation (4.12)) that, for 0 large, 

9; N log8 = l og~+~log( l / s )+* logpo .  (5.15) 

From (5.13) and (5.15), for 8 large, 

$’ N 2a2 f & f {log (l/e)>-’lOg 5-k . . . . (5.16) 

From (5.6) and (5.8) we obtain 

p0 = 25, G, = (2gerfc 6- exp ( - [ 2 ) , > ~ $ ,  (5.17) 

asin(4.6),sincefrom (5.9)and (5.11), Go(0) = -P0.Thenext t termsin(5.6)requiI-e 

2gFi = COG:. (5.18) 

As 5 -+ 0, COG; -+ ZP,, which implies that 

P; P o  1% 5- (5.19) 

Thus, for 5 small, P’ AI 2 + {log ( 1/~)}--~,8~ log 5+ . . . . (5.20) 

Comparing (5.16) and (5.20), we see from (5.9) that, for matching of the inner 
and outer solutions, (5.21) 

Since a2 > 0, this can be satisfied only if Po < 4. As Po -+ 4, a --f 0, and hence 
$o -+ 0. It is clear that separation occurs, of the same type as in 5 3. The viscous 
layer has been brought to rest, and the whole velocity change takes place within 
the magnetic layer. 
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It remains to relate Po to p. From (5.3), g' does not change significantly across 

g'(0) = 7r')p($pog (l/E)}-')p-+. (5.22) 

The original boundary condition (2.3) was g'(0) = 2; this shows that we require 

(5.23) 

the inner layer and hence from (5.5) and (5.17), to a first approximation, 

b0 = ( 4 m  plog U M .  

Thus the separation value Po = 4 corresponds to 

p = 7r{log (l/e)}-l. (5.24) 

Use of (5.1), (5.12), (5.21) and (5.23) shows that the first approximation to the 
skin-friction is given by 

(5.25) 

The first two terms in the binomial expansion of (5.25) are in agreement with 
(4.23). The corresponding value for H,, obtained from (5.11), is identical with 
the first term of the series (4.24). 

Let us now review the analysis of this section. Following the ideas of 3 3, it at  
first seems natural to choose a transformation of the variables which omits the 
factors {log (l/e)}-* in the definitions (5.1) and (5 .5) ,  so that the factors {log (l /~)}-l  
do not appear in (5.2) and (5.6). It may be verified that in this case the matching 
condition (5.21) does not contain the term 2a2 and has zero on the right-hand 
side, so it cannot be satisfied with Po + 0. The next attempt might be to introduce 
the factor {log (l/e)}-l in one only of the equations (5.2) and (5.6). If it is present 
in (5.2) only, the right-hand side of (5.21) is still zero and the equation remains 
insoluble. If it  is present in (5.6) only, (5.21) becomes Po = 4. This form of the 
equations could, therefore, apply onlyin thislimiting case, anddetailedinspection 
shows that even when there remain unsatisfactory features. The transformation 
as originally described is the remaining hope, and the fact that the solution 
proceeds smoothly gives confidence in its correctness. 

To sum up the results of this paper, in Q 2 and Q 4 solutions in series are developed 
for the velocity and magnetic fields, valid when p is sufficiently small, and when 
e is either large or small. In  5 3 and 5 5 it  is shown that for both large and small E ,  

separation occurs when /3 reaches a critical value. In  each case the breakdown 
of the flow takes the form of the boundary layer moving away from the surface, 
leaving a dead-air region of uniform magnetic field strength. The magnetic 
drag remains non-zero, even at  separation. It is natural to conclude that separa- 
tion of this type occurs for sufficiently strong applied fields for any value of the 
conductivity. 

Physically, the separation may be attributed to the field lines which emerge 
from the plate to supply the magnetic flux in the boundary layer, for fluid near 
the plate experiences a resistance in forcing its way past these field lines. 

The situation has some resemblance to the non-conducting boundary-layer 
flow past a plate with emission of fluid at  the surface (with velocity proportional 
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to x-* so as to give a similarity solution). If the emission velocity exceeds a 
certain critical value, the whole boundary layer leaves the surface and is separated 
from it by a region of stagnant fluid, as in the present case. 

Appendix. Errata in Glauert (1961) 
Page 277, equation (1.5): for (f- yf') read (f -f). 
Page 277, equation (1.6): for (9-99') read (7s'-9). 
Page 281, boundary conditions between (3.30) and (3.31): 

for q2(0) = 0 read q2 - @3--l-+ 0 as 8 --f 0; 

for PL(co) = c2 read Pi+4A253-3A ----log5 P -+ c, as 6 -+ co; 
1-P 

for Q;(co) = d2readQL++A2~3- --+- Alog6+d2as5-+co. ( Z p  185) 
Page 286, line after (6.2): for /? > 1 read /3 < 1. 
Page 287, equation (A4): delete divE = 0. 
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